

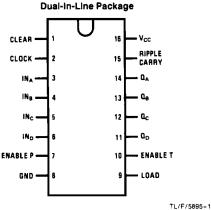
MM54C160/MM74C160 **Decade Counter with Asynchronous Clear** MM54C161/MM74C161 **Binary Counter with Asynchronous Clear** MM54C162/MM74C162 **Decade Counter with Synchronous Clear** MM54C163/MM74C163 **Binary Counter with Synchronous Clear**

General Description

These (synchronous presettable up) counters are monolithic complementary MOS (CMOS) integrated circuits contructed with N- and P-channel enhancement mode transistors. They feature an internal carry lookahead for fast counting schemes and for cascading packages without additional gating.

A low level at the load input disables counting and causes the outputs to agree with the data input after the next positive clock edge. The clear function for the C162 and C163 is synchronous and a low level at the clear input sets all four outputs low after the next positive clock edge. The clear function for the C160 and C161 is asynchronous and a low level at the clear inputs sets all four outputs low regardless of the state of the clock.

Counting is enabled when both count enable inputs are high. Input T is fed forward to also enable the carry out. The carry output is a positive pulse with a duration approximately equal to the positive portion of QA and can be used to enable successive cascaded stages. Logic transitions at the enable P or T inputs can occur when the clock is high or


Features

High noise margin

- 1V guaranteed 0.45 V_{CC} (typ.)
- High noise immunity
- Drives 2 LPTTL loads
- Tenth power TTL compatible Wide supply voltage range
- 3V to 15V

- Internal look-ahead for fast counting schemes
- Carry output for N-bit cascading
- Load control line
- Synchronously programmable

Connection Diagram

Order Number MM54C160*, MM74C160*, MM54C161*, MM74C161*, MM54C162*, MM74C162*, MM54C163* or MM74C163*

> *Please look into Section 8, Appendix D for availability of various package types.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Voltage at Any Pin

-0.3V to $V_{CC} + 0.3V$

Operating Temperature Range

MM54C160/1/2/3 MM74C160/1/2/3

-55°C to +125°C -40°C to +85°C

Storage Temperature Range Maximum V_{CC} Voltage

-65°C to +150°C 18V

Power Dissipation (PD)

Dual-In-Line Small Outline 700 mW 500 mW

Operating V_{CC} Range

3V to 15V

Lead Temperature (Soldering, 10 seconds)

260°C

DC Electrical Characteristics Min/Max limits apply across temperature range unless otherwise noted

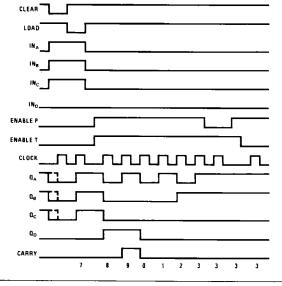
Symbol	Parameter	Conditions	Min	Тур	Max	Units
MOS TO CA	nos					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$ $V_{CC} = 10V$	3.5 8.0			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5V V _{CC} = 10V			1.5 2.0	V V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \mu A$ $V_{CC} = 10V, I_{O} = -10 \mu A$	4.5 9.0			V V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V$, $I_{O} = 10 \mu A$ $V_{CC} = 10V$, $I_{O} = 10 \mu A$			0.5 1.0	V V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	V _{CC} = 15V, V _{IN} = 0V	-1.0	-0.005		μΑ
lcc	Supply Current	V _{CC} = 15V		0.05	300	μА
MOS TO LP	TTL INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	54C V _{CC} = 4.5V 74C V _{CC} = 4.75V	V _{CC} -1.5 V _{CC} -1.5			V V
V _{IN(0)}	Logical "0" Input Voltage	54C V _{CC} = 4.5V 74C V _{CC} = 4.75V			0.8 0.8	V V
V _{OUT(1)}	Logical "1" Output Voltage	54C $V_{CC} = 4.5V$, $I_{O} = -360 \mu A$ 74C $V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	2.4 2.4	l		V V
V _{OUT(0)}	Logical "0" Output Voltage	54C $V_{CC} = 4.5V$, $I_{O} = 360 \mu A$ 74C $V_{CC} = 4.75V$, $I_{O} = 360 \mu A$			0.4 0.4	V V
OUTPUT DR	IVE (See 54C/74C Family Char	acteristics Data Sheet) (Short Circuit C	urrent)			
ISOURCE	Output Source Current	$V_{CC} = 5V, V_{IN(0)} = 0V$ $T_A = 25^{\circ}C, V_{OUT} = 0V$	1.75			mA
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(0)} = 0V$ $T_A = 25^{\circ}C, V_{OUT} = 0V$	8.0			mA
İsink	Output Sink Current	$V_{CC} = 5V, V_{IN(1)} = 5V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	1.75			mA
ISINK	Output Sink Current	V _{CC} = 10V, V _{IN(1)} = 10V T _A = 25°C, V _{OUT} = V _{CC}	8.0			mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

AC Electrical Characteristics*	* T _A = 25°C, C _L = 50 pF, unless otherwise noted
--------------------------------	---

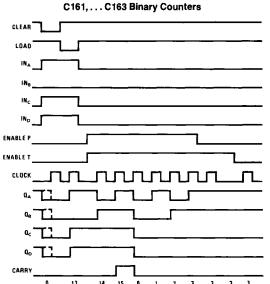
Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd}	Propagation Delay Time from Clock to Q	$V_{CC} = 5V$ $V_{CC} = 10V$		250 100	400 160	ns ns
t _{pd}	Propagation Delay Time from Clock to Carry Out	V _{CC} = 5V V _{CC} = 10V		290 120	450 190	ns ns
t _{pd}	Propagation Delay Time from T Enable to Carry Out	V _{CC} = 5V V _{CC} = 10V		180 70	290 120	ns ns
t _{pd}	Propagation Time from Clear to Q (C160 and C161 only)	V _{CC} = 5V V _{CC} = 10V		190 80	300 150	ns ns
ts	Time prior to Clock that Data or Load must be Present	V _{CC} = 5V V _{CC} = 10V			120 30	ns ns
ts	Time prior to Clock that Enable P or T must be Present	$V_{CC} = 5V$ $V_{CC} = 10V$		170 70	280 120	ns ns
ts	Time prior to Clock that Clear must be Present (162, 163 only)	V _{CC} = 5V V _{CC} = 10V		120 50	190 80	ns ns
tw	Minimum Clock Pulses Width	$V_{CC} = 5V$ $V_{CC} = 10V$		90 35	170 70	ns ns
t _r , t _f	Maximum Clock Rise or Fall Time	V _{CC} = 5V V _{CC} = 10V			15 5	μs μs
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$ $V_{CC} = 10V$	2.0 5.5	3 8.5		MHz MHz
C _{PD}	Power Dissipation Capacitance	(Note 3)		95		pF
C _{IN}	Input Capacitance	(Note 2)		5		ρF
	Input Capacitance ers are guaranteed by DC correlated testing.	(Note 2)		5		

AC Parameters are guaranteed by DC correlated testing

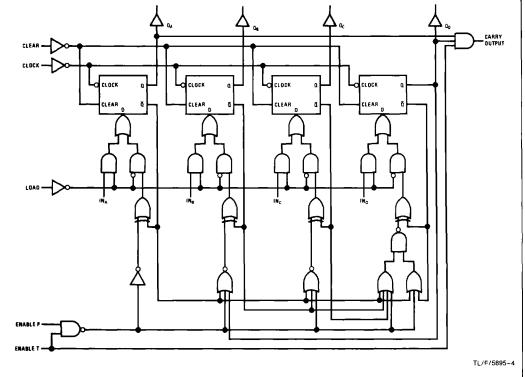

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

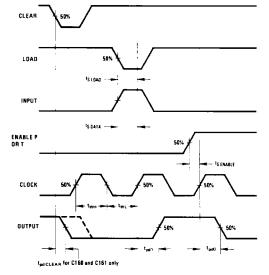
Note 2: Capacitance is guaranteed by periodic testing.

Note 3: Cpp determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics Application Note AN-90.


Logic Waveforms

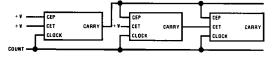
TL/F/5895-2




TL/F/5895-3

Logic Diagrams

MM74C160, MM74C162; Clear is Synchronous for the MM74C162



MM74C161, MM74C163; Clear is Synchronous for the MM74C163 CLEAR CLOCK CLEAR CLOCK CLEAR CLOCK CLEAR CLEAR CLEAR CLEAR CLOCK CLEAR
Switching Time Waveforms

Note 1: All input pulses are from generators having the following characteristics; $t_f=t_f=20$ ns, PRR ≤ 1 MHz, duty cycle $\le 50\%$, $Z_{OUT}\approx 50\Omega$. Note 2: All times are measured from 50% to 50%.

Cascading Packages

TL/F/5895-7

TL/F/5895-6

TL/F/5895-5