
Freescale Semiconductor
Application Note

AN3283
Rev. 0.1, 06/2006

Table of Contents
1 JTAG..2
2 On-Chip Emulation (OnCE).................................5
3 Nexus Read/Write Access Block21
4 System Initialization...26
5 Creating the Flash Programming Tool28
6 Revision History ..33

MPC5500 Flash Programming
Through Nexus/JTAG
by: Kyle Norman

MCD Applications
The MPC5500 family of devices has internal Flash used
for code and data.1 The Nexus debug interface can be
used to program the Flash using the JTAG
communication protocol through the JTAG port. This
allows programming of the internal Flash by an external
tool.

This application note first addresses the JTAG and Nexus
communication protocol. The JTAG discussion includes
the JTAG signals, TAP controller state machine, and the
JTAG controller. The explanation of Nexus includes the
on-chip emulation (OnCE) module and the Nexus
read/write (R/W) access block.

After the communication protocols are described, this
document goes into details of the Freescale-provided
Flash drivers and the requirements of the external tool
for Flash programming. For the purpose of this
document, the external tool consists of a PC application
combined with interface hardware that connects the PC
to the JTAG port on an MPC5500 board or module.

1. The internal Flash on the MPC5500 devices can also be used for
EEPROM emulation. See the white paper titled “MPC5500 Using
Flash as EEPROM” for details.
© Freescale Semiconductor, Inc., 2006. All rights reserved.

JTAG
This document is intended for anyone wanting to develop a Flash programming tool for the MPC5500
family of devices. Someone wanting to learn about the JTAG communication protocol, OnCE module, or
the Nexus R/W access block may also find this application note beneficial.

1 JTAG
JTAG is a serial communication protocol developed by the Joint Test Access Group. Originally developed
for boundary scan, JTAG is also used for communication with the Nexus debug interface (NDI) on the
MPC5500 devices. Figure 2 shows a block diagram of the NDI.

1.1 JTAG Signals
The JTAG port of the MPC5500 devices consists of the TCK, TDI, TDO, TMS, and JCOMP pins. TDI,
TDO, TMS, and TCK are compliant with the IEEE 1149.1-2001 standard and are shared with the NDI
through the test access port (TAP) interface. See Table 1 for signal properties.

1.2 TAP Controller State Machine
The TAP controller state machine controls the JTAG logic. The TAP controller state machine is a 16-state
finite state machine (FSM) as shown in Figure 1. The TCK and TMS signals control transition between
states of the FSM. These two signals control whether an instruction register scan or data register scan is
performed. Both the TDI and TMS inputs are sampled on the rising edge of TCK while the TDO output
changes on the falling edge of TCK. The value shown next to each state of the state machine in Figure 1
is the value of TMS required on the rising edge of TCK to transition to the connected state. Five rising
edges of TCK with TMS at logic 1 guarantees entry into the TEST LOGIC RESET state.

Table 1. JTAG Signal Properties

Name I/O Function

TCK I Test Clock

TDI I Test Data In

TDO O Test Data Out

TMS I Test Mode Select

JCOMP I JTAG Compliancy
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor2

JTAG
Figure 1. TAP Controller Finite State Machine

TEST LOGIC
RESET

RUN-TEST/IDLE SELECT-DR-SCAN SELECT-IR-SCAN

CAPTURE-DR CAPTURE-IR

SHIFT-DR SHIFT-IR

EXIT1-DR EXIT1-IR

PAUSE-DR PAUSE-IR

EXIT2-DR EXIT2-IR

UPDATE-DR UPDATE-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS at the time
of a rising edge of TCK.
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 3

JTAG
1.3 JTAG Controller (JTAGC)
The MPC5500 family of devices have a JTAG controller (JTAGC) that enables both boundary scan and
communication with the Nexus development interface (NDI). A block diagram of the NDI is shown in
Figure 2.

Figure 2. Nexus Development Interface (NDI) Block Diagram

1.3.1 JTAGC Reset
The JTAGC is placed in reset when the TAP controller state machine is in the test logic reset state. The
test logic reset state is entered upon the assertion of the power-on reset signal, negation of JCOMP, or
through TAP controller state machine transitions controlled by TMS. Asserting power-on reset or negat-
ing JCOMP results in asynchronous entry into the test logic reset state.

JCOMP

Program, Data,
Ownership,
Watchpoint,

Trace

R/W Register,
Halt, Step,
Continue

Data,
Watchpoint,

Trace

Buffer

Program, Data,
Ownership,
Watchpoint,

Trace

R/W Register,
R/W Data,
Halt, Step,
Continue

Read/Write
Access

Cache

NZ6C3

Nexus Port Controller
(NPC)

JTAG Port Controller (JTAGC)

RDY TDI TCK TDO TMS EVTI

Auxiliary Port

MSEO[0:1] MCKO MDO(4 or 12) EVTO
• • •

Buffer

Off-Chip
Memory & I/O

XBAR

eDMAC

MMU

e200z6

Engine
1

CDC

Engine
2*

eTPU

NXDM

Data,
Watchpoint,

Trace

Buffer

NXFR

FlexRay

On-Chip
Memory & I/O

Buffer

* Some MPC55xx devices have one eTPU engine, others have two engines.

NDEDI
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor4

On-Chip Emulation (OnCE)
1.3.2 TAP Sharing
The JTAGC allows communication with the NDI by sharing the test access port (TAP) with other TAP
controllers. The JTAGC initially has control of the TAP after the assertion of power-on reset or the
negation of JCOMP. As an example, selectable NDI TAP controllers for the MPC5554 include the Nexus
port controller, e200z6 OnCE, eTPU Nexus, and eDMA Nexus. The NDI TAP controllers are selected by
loading the appropriate opcode into the 5-bit instruction register of the JTAGC while JCOMP is asserted.
Table 2 shows the opcodes for the selectable TAP controllers. When one of these opcodes is loaded,
control of the TAP pins is transferred to the selected auxiliary TAP controller. Any data input via TDI and
TMS is passed to the selected TAP controller, and any TDO output from the selected TAP controller is sent
back to the JTAGC to be output on the TDO pin.

The JTAGC regains control of the TAP during the UPDATE-DR state if the PAUSE-DR state was entered.
Auxiliary TAP controllers are held in RUN-TEST/IDLE while they are inactive. This document will focus
on the OnCE TAP controller. While access to the other TAP controllers is similar, they are outside the
scope of this document and are not needed for Flash programming.

2 On-Chip Emulation (OnCE)
All of the MPC5500 devices possess a OnCE module for debug control of the PowerPC e200 core. The
OnCE logic provides Nexus class 1 static debug capability including run-time control, register access, and
memory access to all memory-mapped regions including on-chip peripherals. The OnCE module is
controlled by the JTAG signals through the OnCE TAP controller.

2.1 Enabling the OnCE TAP Controller
Control of the OnCE module is obtained through the OnCE TAP controller. To enable the OnCE TAP
controller, the JTAGC must have control of the TAP and the ACCESS_AUX_TAP_ONCE (0b10001)
opcode must be loaded into the 5-bit JTAGC instruction register with the JCOMP signal set to a logic 1.
The JTAGC instruction register is loaded by scanning in the appropriate bits on the TDI pin, least
significant bit (LSB) first, while in the SHIFT-IR state of the TAP controller state machine shown in
Figure 1. The last bit is shifted in with TMS set to a logical 1 causing transition from the SHIFT-IR state
to the EXIT1-IR state. Table 3 shows the steps required to enable the OnCE TAP controller, assuming the
TAP controller state machine is initially in the RUN-TEST/IDLE state. The state machine is returned to
the RUN-TEST/IDLE state when the write is complete.

Table 2. JTAG Client Select Instructions

JTAGC Instruction Opcode Description

ACCESS_AUX_TAP_NPC 10000 Enables access to the NPC TAP controller

ACCESS_AUX_TAP_ONCE 10001 Enables access to the e200z6 OnCE TAP controller

ACCESS_AUX_TAP_eTPU 10010 Enables access to the eTPU Nexus TAP controller

ACCESS_AUX_TAP_DMA 10011 Enables access to the eDMA Nexus TAP controller

ACCESS_AUX_TAP_NXFR 10100 Enables access to the FlexRay Nexus TAP controller
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 5

On-Chip Emulation (OnCE)
Figure 3 shows the required signal transitions on a logic analyzer for enabling the OnCE TAP controller.

Figure 3. Signal Transitions for Enabling the OnCE TAP Controller

2.2 OnCE Register Access
The OnCE module provides several registers for static debug support. The OnCE command register
(OCMD) is a special register and acts as the IR for the TAP controller state machine and is used to access
other OnCE resources.

2.2.1 OnCE Command Register
The OnCE command register (OCMD) is a 10-bit shift register that receives its serial data from the TDI
pin and acts as the IR register of the TAP controller state machine. The OCMD is updated when the TAP

Table 3. Steps for Enabling the OnCE TAP Controller

TCK Tick TMS TDI Resulting State

1 1 X1

NOTES:
1 A value of X signifies that the signal value does not

matter.

SELECT-DR-SCAN

2 1 X SELECT-IR-SCAN

3 0 X CAPTURE-IR

4 0 X SHIFT-IR

5 0 1 SHIFT-IR

6 0 0 SHIFT-IR

7 0 0 SHIFT-IR

8 0 0 SHIFT-IR

9 1 1 EXIT1-IR

10 1 X UPDATE-IR

11 0 X RUN-TEST/IDLE

Data starts on
this clock edge

1 0 0 0 1
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor6

On-Chip Emulation (OnCE)
controller enters the UPDATE-IR state. It contains fields for controlling access to a resource, as well as
controlling single step operations and exit from debug mode. Figure 4 shows the register definition for the
OnCE command register.

Figure 4. OnCE Command Register

Table 4 provides bit definitions for the once command register.

R/W GO EX RS[0:6]

0 1 2 3 4 5 6 7 8 9

Reset - 0b10_0000_0010 on assertion of JCOMP, during power on reset, or while in the TEST LOGIC RESET state

Table 4. OnCE Command Register Bit Definitions

Bit(s) Name Description

0 R/W Read/Write Command Bit
The R/W bit specifies the direction of data transfer. The table below describes the options
defined by the R/W bit.
0 Write the data associated with the command into the register specified by RS[0:6]
1 Read the data contained in the register specified by RS[0:6]
Note: The R/W bit is ignored for read-only or write-only registers. In addition, it is ignored for
all bypass operations. When performing writes, most registers are sampled in the Capture-DR
state into a 32-bit shift register, and subsequently shifted out on TDO during the first 32 clocks
of Shift-DR.

1 GO Go Command Bit
0 Inactive (no action taken)
1 Execute instruction in IR
If the GO bit is set, the chip will execute the instruction which resides in the IR register in the
CPUSCR. To execute the instruction, the processor leaves debug mode, executes the
instruction, and if the EX bit is cleared, returns to debug mode immediately after executing the
instruction. The processor goes on to normal operation if the EX bit is set, and no other debug
request source is asserted. The GO command is executed only if the operation is a read/write
to CPUSCR or a read/write to “No Register Selected”. Otherwise the GO bit is ignored.The
processor will leave debug mode after the TAP controller Update-DR state is entered.
On a GO+NoExit operation, returning to debug mode is treated as a debug event, thus
exceptions such as machine checks and interrupts may take priority and prevent execution of
the intended instruction. Debug firmware should mask these exceptions as appropriate. The
OSR[ERR] bit indicates such an occurrence.
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 7

On-Chip Emulation (OnCE)
Table 5 shows the OnCE register addresses. Access to the registers CPUSCR, DAC1-2, DBCNT,
DBCR0-3, DBSR, and IAC1-4 require that the external debug mode bit, DBCR0[EDM], be set to a logical
1. Only the DBCR0[EDM] is accessible in the DBCR0 register prior to that bit being set. Setting
DBCR0[EDM] enables external debug mode and disables software updates to debug registers. The CPU
should be placed in debug mode via the OCR[DR] bit prior to setting the DBCR0[EDM] bit. For more
information on enabling external debug mode, see Section 2.5, “Enabling External Debug Mode and Other
Initialization.”

2 EX Exit Command Bit
0 Remain in debug mode
1 Leave debug mode
If the EX bit is set, the processor will leave debug mode and resume normal operation until
another debug request is generated. The Exit command is executed only if the Go command
is issued, and the operation is a read/write to CPUSCR or a read/write to “No Register
Selected”. Otherwise the EX bit is ignored.
The processor will leave debug mode after the TAP controller Update-DR state is entered. Note
that if the DR bit in the OnCE control register is set or remains set, or if a bit in the DBSR is set,
or if a bit in the DBSR is set and DBCR0[EDM]=1 (external debug mode is enabled), then the
processor may return to debug mode without execution of an instruction, even though the EX
bit was set.

3–9 RS Register Select
The Register Select bits define which register is source (destination) for the read (write)
operation. Attempted writes to read-only registers are ignored.

Table 5. OnCE Register Addressing

RS[0:6] Register Selected

000 0000 Reserved

000 0001 Reserved

000 0010 JTAG ID (read-only)

000 0011-
000 1111

Reserved

001 0000 CPU Scan Register (CPUSCR)

001 0001 No Register Selected (Bypass)

001 0010 OnCE Control Register (OCR)

001 0011 Reserved

001 0100 -
001 1111

Reserved

010 0000 Instruction Address Compare 1 (IAC1)

010 0001 Instruction Address Compare 2 (IAC2)

010 0010 Instruction Address Compare 3 (IAC3)

010 0011 Instruction Address Compare 4 (IAC4)

Table 4. OnCE Command Register Bit Definitions (continued)

Bit(s) Name Description
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor8

On-Chip Emulation (OnCE)
2.2.2 Example of OnCE Register Write
OnCE registers can be written by selecting the register using the RS[0:6] field and clearing the R/W bit in
the OnCE command register (OCMD). This requires a scan through the IR path of the TAP controller state
machine to write the OCMD and a scan through the DR path of the TAP controller state machine to write
the selected register. As mentioned above, the external debug mode bit, DBCR0[EDM], must be set to a
logical 1 to allow access to most of the OnCE registers. Therefore, writing the DCBR0 register to set the
EDM bit is used as an example of a writing a OnCE register. Figure 5 shows the register definition of
DBCR0.

010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

010 0110 -
010 1011

Reserved

010 1100 Debug Counter Register (DBCNT)

010 1101 Debug PCFIFO (PCFIFO) (read-only)

010 1110 -
010 1111

Reserved

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCR0)

011 0010 Debug Control Register 1 (DBCR1)

011 0011 Debug Control Register 2 (DBCR2)

011 0100 Debug Control Register 3 (DBCR3)

011 0101-
101 1111

Reserved

111 0000 -
111 1001

General Purpose register selects [0:9]

111 1010 Cache Debug Access Control Register (CDACNTL)

111 1011 Cache Debug Access Data Register (CDADATA)

111 1100 Nexus3-Access

111 1101 Reserved

111 1110 Enable_OnCE1

111 1111 Bypass

NOTES:
1 It is not necessary to enable the OnCE module on the MPC5500 devices.

Table 5. OnCE Register Addressing (continued)

RS[0:6] Register Selected
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 9

On-Chip Emulation (OnCE)
Figure 5. DBCR0 Register

The example of writing DBCR0 is divided into two parts: writing OCMD to select a write to DBCR0, and
writing the value 0x80000000 to DBCR0. All data will be scanned in least significant bit first.

Figure 6 shows writing the value 0b00_0011_0001 to OCMD through the IR path to select a write to
DBCR0 assuming the TAP controller state machine is initially in the RUN-TEST/IDLE state. The state
machine is returned to the RUN-TEST/IDLE state when the write is complete.

Figure 6. Signal Transitions for Writing OCMD to Select a Write to DBCR0

Figure 7 shows writing the value 0x80000000 to DBCR0 through the DR path to set the EDM bit assuming
the TAP controller state machine is initially in the RUN-TEST/IDLE state. The state machine is returned
to the RUN-TEST/IDLE state when the write is complete.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EDM IDM RST ICMP BRT IRPT TRAP IAC1 IAC2 IAC3 IAC4 DAC1 DAC2

W

Reset 01

NOTES:
1 DBCR0[EDM] is affected by a Nexus port reset or a power on reset, but not by an assertion of RESET. All other bits

are reset by processor reset (including assertion of RESET) as well as by a power on reset.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RET 0 0 0 0 DEVT1 DEVT2 DCNT1 DCNT2 CIRPT CRET 0 0 0 0 FT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Data starts on
this clock edge

1 0 0 0 1 1 0 0 0 0
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor10

On-Chip Emulation (OnCE)
Figure 7. Signal Transitions for Writing DBCR0

2.2.3 Example of OnCE Register Read
OnCE registers can be read by selecting the register using the RS[0:6] field and setting the R/W bit in the
OnCE command register (OCMD). This requires a scan through the IR path of the TAP controller state
machine to write the OCMD and a scan through the DR path of the TAP controller state machine to read
the selected register. A write to DBCR0 to set the EDM bit was used for an example of a writing a OnCE
register, Section 2.2.2, “Example of OnCE Register Write,” so this read example will read DBCR0 after
the EDM bit is set. Figure 5 shows the register definition of the DBCR0.

Figure 8 shows writing the value 0b10_0011_0001 to OCMD through the IR path to select a read from
DBCR0 assuming the TAP controller state machine is initially in the RUN-TEST/IDLE state. The state
machine is returned to the RUN-TEST/IDLE state when the write is complete.

Figure 8. Signal Transitions for Writing OCMD to Select a Read from DBCR0

Figure 9 shows reading the value 0x80000000 from DBCR0 through the DR path assuming the TAP
controller state machine is initially in the RUN-TEST/IDLE state. The state machine is returned to the
RUN-TEST/IDLE state when the read is complete.

Data starts on
this clock edge

0 0 0 0 0 0 0 0 0 0 1

Data starts on
this clock edge

1 0 0 0 1 1 0 0 0 1
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 11

On-Chip Emulation (OnCE)
Figure 9. Signal Transitions for Reading DBCR0

2.3 OnCE Status Register
The OnCE status register (OSR) is a special register in terms of how it is read. Status information related
to the state of the CPU is latched into the OnCE status register when the OnCE TAP controller state
machine enters the CAPTURE-IR state. The status information is shifted out serially through the
SHIFT-IR state on TDO. The OSR is a 10-bit register like the OCMD. Therefore, the status information
can be read while writing OCMD. The OSR is shown in Figure 10.

Figure 11 shows reading the OnCE status register on TDO while writing the OCMD on TDI assuming the
TAP controller state machine is initially in the RUN-TEST/IDLE state. The state machine is returned to
the RUN-TEST/IDLE state when the read is complete. The OCMD is written with the value
0b10_0001_0001 choosing a read of No Register Selected. The data read on TDO from the OnCE status
register is 0b10_0000_1001 showing that the OSR[MCLK] and OSR[DEBUG] status bits are set. All data
is scanned in and out least significant bit first.

MCLK ERR CHKSTOP RESET HALT STOP DEBUG 0 1

0 1 2 3 4 5 6 7 8 9

Figure 10. OnCE Status Register

Data starts on
this clock edge

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor12

On-Chip Emulation (OnCE)
Figure 11. Signal Transitions of Reading the OnCE Status Register

2.4 Entering Debug Mode During Reset
There are several different methods of entering debug mode. This section will cover entering debug mode
while the RESET pin is asserted. Entering debug mode while the RESET pin is asserted is useful, because
the debug session will begin with the CPU in a known state. The OnCE control register (OCR) controls
entry into debug mode for this method. Figure 12 shows the register definition for the OCR.

The OCR[DR] bit is the CPU debug request control bit and requests the CPU to unconditionally enter
debug mode. The OCR[WKUP] bit is the wakeup request bit used to guarantee that the CPU clock is
running. Debug status and CPU clock activity can be determined by reading the DEBUG and MCLK bits
in the OnCE status register. After entering debug mode, the OCR[DR] bit should be cleared leaving the
OCR[WKUP] bit set. OCR[FDB] should also then be set to enable recognition of software breakpoints.
See Section 2.12.1, “Software Breakpoints” for details on software breakpoints. The steps required for
entering debug mode during reset assuming the OnCE TAP controller has been enabled via the method
described in Section 2.1, “Enabling the OnCE TAP Controller” are listed below:

1. Assert RESET.
2. Set the OCR[DR] and OCR[WKUP] bits.
3. De-assert RESET.
4. Verify debug mode via the DEBUG bit in the OnCE status register.
5. Clear the OCR[DR] bit while leaving OCR[WKUP] set and set OCR[FDB].

For programming the Flash through the Nexus port, the boot configuration pins must be set to a value that
enables both Nexus and the internal Flash prior to the assertion of RESET. Table 6 shows the boot
configuration options.

0 DMDIS 0 DW DI DM DG DE 0 WKUP FDB DR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reset - 0x0000_0000 on negation of JCOMP, power on reset, or entering TEST LOGIC RESET state

Figure 12. OnCE Control Register

Data starts on
this clock edgeData starts on

this clock edge

1 0 0 0 1 0 0 0 0 1

1 0 0 1 0 0 0 0 0 1
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 13

On-Chip Emulation (OnCE)

2.5 Enabling External Debug Mode and Other Initialization
Before enabling external debug mode, the CPU should be placed into debug mode via the method outlined
in Section 2.4, “Entering Debug Mode During Reset.” The external tool should then write the
DBCR0[EDM] bit to enable external debug mode. Note that the first write to DBCR0 will only affect the
EDM bit. All other bits in that register require DBCR0[EDM] to be set prior to writing them. After
enabling external debug mode, the DBSR status bits should be cleared by writing 0xFFFFFFFF to DBSR
using the method described in Section 2.2, “OnCE Register Access.” The register definition of DBSR is
shown in Figure 13.

Figure 13. Debug Status Register (DBSR)

2.6 CPU Status and Control Scan Chain Register
(CPUSCR)

CPU information is accessible via the OnCE module through a single scan chain register named the
CPUSCR. The CPUSCR provides access to this CPU information and a mechanism for an external tool to
set the CPU to a desired state before exiting debug mode. The CPUSCR also provides the ability to access

Table 6. Boot Modes

BOOTCFG[0:1]
Censorship

Control
0x00FF_FFE0

Serial Boot
Control

0x00FF_FFE2
Boot Mode Name

Internal
Flash
State

Nexus
State

Serial
Password

00 !0x55AA Don't care Internal - Censored Enabled Disabled Flash

0x55AA Internal - Public Enabled Enabled Public

01 Don't care 0x55AA Serial - Flash Password Enabled Disabled Flash

!0x55AA Serial - Public Password Disabled Enabled Public

10 !0x55AA Don't care External – No Arbitration -
Censored

Disabled Enabled Public

0x55AA External – No Arbitration - Public Enabled Enabled Public

11 !0x55AA Don't care External – External Arbitration -
Censored

Disabled Enabled Public

0x55AA External – External Arbitration - Public Enabled Enabled Public

’!’ = ’NOT’, meaning any value other than the value specified. Values 0x0000 and 0xFFFF should not be used.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R IDE UDE MRR ICMP BRT IRPT TRAP IAC1 IAC2 IAC3 IAC4 DAC
1R

DAC1
W

DAC
2R

DAC
2W

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RET 0 0 0 0 DEVT
1

DEV
T2

DCNT
1

DCN
T2

CIRP
T

CRET 0 0 0 0 CNT
1RG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor14

On-Chip Emulation (OnCE)
register and memory contents. Figure 14 shows the CPUSCR. Once debug mode has been entered, it is
required to scan in and update the CPUSCR prior to exiting debug mode or single stepping. Access to the
CPUSCR is controlled by the OCMD as described in Section 2.2, “OnCE Register Access.”

Figure 14. CPU Status and Control Scan Chain Register

2.6.1 Instruction Register (IR)
After entering debug mode, the opcode of the next instruction to be executed will be in the instruction
register (IR). The value in the IR should be saved for later restoration if continuation of the normal
instruction stream is desired.

The external tool has the capability to put instructions directly into the instruction register (IR) via the
CPUSCR. These instructions can then be executed by the debug control block. By selecting appropriate
instructions and single stepping them, the external tool can examine or change memory locations or CPU
registers. See Section 2.7, “Single Step” for details on single step.

TDO

TDI

TCK

MSR

WBBRhigh

32

32
0 31

0 31

PC
32

0 31

IR
32

0 31

CTL
32

0 31

WBBRlow

32
0 31
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 15

On-Chip Emulation (OnCE)
2.6.2 Control State Register (CTL)
The control state register (CTL) stores the value of certain internal CPU state variables before debug mode
is entered. Figure 15 shows the CTL register.

The “*” in the CTL register represents internal processor state bits that should be restored to the value they
held when debug mode was entered prior to exiting debug mode. If a single step is executing an instruction
that is in the normal instruction flow of the program that was running when debug mode was entered, these
bits should be restored. If a single step is executing an instruction outside the normal instruction flow, these
bits should be cleared to zero.

The PCOFST field indicates whether the value in the PC portion of the CPUSCR must be adjusted prior
to exiting debug mode. Due to the pipelined nature of the CPU, the PC value must be backed-up under
certain circumstances. The PCOFST field specifies the value to be subtracted from the PC value when
debug mode was entered. This PC value should be adjusted according to PCOFST prior to exit from debug
mode if continuation of the normal instruction stream is desired. In the event that PCOFST is non-zero,
the IR should be loaded with a nop instruction instead of the value in the IR when debug mode was entered.
Below are the possible values and meanings of the PCOFST field.

0000—No correction required.
0001—Subtract 0x04 from PC.
0010—Subtract 0x08 from PC.
0011—Subtract 0x0C from PC.
0100—Subtract 0x10 from PC.
0101—Subtract 0x14 from PC.
All other encodings are reserved.

After entering debug mode, the PCINV field overrides the PCOFST field and indicates that values in the
PC and IR are invalid. Exiting debug mode with these PC and IR values will have unpredictable results.

No error condition exists.
Error condition exists. PC and IR are corrupt.

The FFRA control bit causes the contents of WBBR to be used as the rA (rS for logical and shift
operations) operand value of the first instruction to be executed when exiting debug mode or the
instruction to be single stepped. This allows the external tool to update CPU registers and memory. rA and
rS are instruction syntax used to identify a source GPR.

No action.
Contents of WBBR used as rA (rS for logical and shift operations) operand value.

The IRStat0-9 bits provide status information to the external tool. The IRStat8 bit indicates that the
instruction in the IR is a VLE or non-VLE instruction. For MPC5500 devices without VLE, bits IRstat8

*

P
C

O
F

S
T

P
C

IN
V

F
F

R
A

IR
S

TA
T

0

IR
S

TA
T

1

IR
S

TA
T

2

IR
S

TA
T

3

IR
S

TA
T

4

IR
S

TA
T

5

IR
S

TA
T

6

IR
S

TA
T

7

IR
S

TA
T

8

IR
S

TA
T

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 15. Control State Register (CTL)
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor16

On-Chip Emulation (OnCE)
and IRstat9 of the CTL do not exist. Below is a description of the IRStat8 bit. All other CTL bits will be
discussed as needed.

IR contains a BookE instruction.
IR contains a PowerPC VLE instruction, aligned in the most significant portion of IR if 16-bit.

2.6.3 Program Counter Register (PC)
The PC stores the value of the program counter that was present when debug mode was entered. The PC
value is affected by operations performed during debug mode and must be restored prior to exiting debug
mode. It may be necessary to adjust the PC before exiting debug mode according the PCOFST field in the
CTL. If the external tool desires to redirect program flow to an arbitrary location, the PC and IR should be
initialized corresponding to the first instruction to be executed. Alternatively, the IR may be set to a nop
instruction and the PC may be set to the location prior to the location at which it is desired to redirect flow.
When debug mode is exited, the nop will execute and then instruction fetch and execution will begin at
the location which it is desired to redirect flow.

2.6.4 Write-Back Bus Register (WBBRlow, WBBRhigh)
WBBR is used as a means of passing operand information to/from the CPU from/to the external tool.
Whenever the external tool needs to read the contents of a CPU register or memory location, it can force
the CPU to single step an instruction that brings that information to WBBR. To write the contents of a CPU
register or memory location, the external tool can force the CPU to single step an instruction that uses the
information in WBBR. For the purpose of this document, only WBBRlow will be used. WBBRhigh is used
for SPE instructions that generate 64-bit results or use 64-bit operands. Such instructions are outside the
scope of this document.

2.6.5 Machine State Register (MSR)
The MSR is used to read/write the machine state register of the CPU. This register is affected by operations
performed while in debug mode. If consistency of the machine state is desired, the MSR should be saved
when entering debug mode and restored prior to exiting debug mode.

2.7 Single Step
Single stepping of instructions is achieved by first placing the CPU in debug mode if the CPU is not
already in debug mode. The next step is to write the appropriate information into the CPU scan chain
register (CPUSCR), followed by writing to OCMD to set the OCMD[GO] bit and clear the OCMD[EX]
bit with the OCMD[RS] field indicating either the CPUSCR or No Register Selected. The CPUSCR
register is covered in Section 2.6, “CPU Status and Control Scan Chain Register (CPUSCR).” Once debug
mode has been entered, it is required that a scan in and update to the CPUSCR must be performed prior to
single stepping.

For single step, the CPU will return to debug mode after executing a single instruction. The external tool
should read the OnCE status register (OSR) to verify that the CPU has returned to debug mode with no
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 17

On-Chip Emulation (OnCE)
error by verifying that the OSR[DEBUG] bit is set and OSR[ERR] bit is cleared. For details on reading
the OSR, see Section 2.3, “OnCE Status Register.”

During single step, exception conditions can occur, if not masked, and may prevent the desired instruction
from being executed. After stepping over the instruction, the core will fetch the next instruction. The new
program counter and instruction will be loaded into the PC and IR portions of the CPUSCR. Care must be
taken to insure that the next instruction fetch after the single step is to a valid memory location. See
Section 4.1, “Setting Up the Memory Management Unit” and Section 4.2, “Internal SRAM Initialization”
for details. For MPC5500 devices with VLE, the CTL[IRstat8] bit indicates that the instruction in the IR
is a VLE or non-VLE instruction. The CTL[FFRA], CTL[IRStat8], and the CTL bits indicated by “*”
should be set as appropriate before single stepping. All other CTL bits should be set to zero. See
Section 2.6.2, “Control State Register (CTL)” for details on FFRA, IRStat8, and the bits indicated by “*”.

Single stepping can be used during normal execution of the instruction flow or to force execution of a
particular instruction by loading the desired instruction into the IR portion of the CPUSCR. By forcing
execution of particular instructions, single stepping can be used for memory and register access by the tool.
See Section 2.11, “OnCE Memory Access”, Section 2.9, “GPR Access”, and Section 2.10, “SPR Access”
for details.

2.8 Exit From Debug Mode to Normal Execution
Exiting debug mode and returning to normal execution is achieved by first clearing the OCR[DMDIS] and
OCR[DR] bits if not already clear while leaving the OCR[MCLK] set. The next step is to write the
appropriate information into the CPU scan chain register (CPUSCR), followed by a write to OCMD to set
the OCMD[GO] bit and OCMD[EX] bit with the OCMD[RS] field indicating either the CPUSCR or No
Register Selected. Once debug mode has been entered, it is required that a scan in and update to the
CPUSCR be performed prior to exiting debug mode. The CPUSCR register is covered in Section 2.6,
“CPU Status and Control Scan Chain Register (CPUSCR).” If continuation of the normal instruction
stream is desired, the external tool is responsible for inspection of the CTL register value when debug
mode was entered to determine if the PC is invalid or needs to be offset prior to exiting debug mode. Also,
the internal state bits indicated by “*” in the CTL should be restored to their original value when debug
mode was entered if continuation of the normal instruction stream is desired. The IRStatus bits of the CTL
should be set to zero with the exception of CTL[IRStat8] on MPC5500 devices with VLE. CTL[IRStat8]
indicates if the current instruction in the IR is a VLE or non-VLE instruction. See Section 2.6.2, “Control
State Register (CTL)” for details.

To begin instruction execution from an arbitrary location, which is the case when executing the
Freescale-provided Flash drivers, the PC should be set to the desired location for execution to begin minus
0x4. The IR should be set to a nop (ex: 0x60000000). Then exit debug mode as mentioned above. The nop
will be executed, then the core will begin fetching instructions at the desired location for execution.

2.9 GPR Access
The OnCE module provides the ability to read and write the general purpose registers (GPR) while in
debug mode. Reading a general purpose register is achieved by single stepping over an ori instruction. As
an example, to read the lower 32 bits of GPR r1, an ori r1,r1,0 instruction is executed, and the result of
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor18

On-Chip Emulation (OnCE)
the instruction will be latched into WBBRlow. The external tool can then read the contents of WBBRlow by
scanning out the CPUSCR.

Writing a register is achieved by single stepping over an ori instruction with the CTL[FFRA] bit set
causing the WBBRlow to be used as the source register for the instruction. As an example, to write the
lower 32 bit of GPR r1, an ori r1, X, 0 is executed with the data to be written in WBBRlow. The X in the
instruction will be replaced by the WBBRlow register. See Section 2.7, “Single Step” for details on single
stepping.

2.10 SPR Access
The OnCE module provides the ability to read and write the special purpose registers (SPR) while in debug
mode. Reading a special purpose register is achieved by saving the value in a GPR, single stepping over a
mfspr instruction which brings the spr value into both the saved GPR and WBBRlow, and then restoring
the GPR. As an example, to read SPR 624, first save r31. Then execute mfspr r31, 624. The value that
was in SPR 624 will now be in WBBRlow of the CPUSCR and can be read by the external tool. Finally r31
should be restored.

To write an SPR, single step over a mtspr instruction with the value to write to the SPR in WBBRlow and
the CTL[FFRA] bit set. For example, to write SPR 624 with the value 0x10050000, single step over mtspr
624, X with the value to write to SPR 624 in WBBRlow and CTL[FFRA] set. The X in the instruction will
be replaced by WBBRlow. See Section 2.7, “Single Step” for details on single stepping.

DBCR0-3, DBSR, DBCNT, IAC1-4, DAC1-2 cannot be written by single stepping over mtspr like the
other SPRs while in external debug mode. They can however be written by the method detailed in
Section 2.2, “OnCE Register Access.”

2.11 OnCE Memory Access
There are two ways to access memory mapped locations on the MPC5500 devices: one is through the
OnCE module, and the other is through the Nexus R/W access block. The OnCE module method requires
that the CPU be in debug mode and makes use of the memory management unit (MMU) and cache. The
Nexus R/W access block does not require that the CPU be in debug mode and bypasses the MMU and
cache. The Nexus R/W access block is also the faster method of accessing memory. This section will cover
access to memory mapped locations using the OnCE method. The Nexus R/W access block will be covered
in Section 3, “Nexus Read/Write Access Block.”

Writing a memory location is achieved by first reading the contents of a GPR and saving that value, writing
that GPR with the value to be written to memory, and single stepping over a stw, sth, or stb instruction
with the address to write in WBBRlow and the CTL[FFRA] bit set. The GPR that was previously saved
should be used as the rS field of the store instruction. After single stepping over the store instruction, the
saved GPR value should then be restored. For example, to write the word 0xA5A5A5A5 to location
0x40000000, first save the value in a r31. Then write the value 0xA5A5A5A5 to r31. The next step is to
step over the instruction stw r31, 0(X) with 0x40000000 in WBBRlow and the CTL[FFRA] bit set. The X
in the instruction is replaced by the WBBRlow register. GPR r31 should then be restored to its saved value.

Reading a memory location is achieved by first reading the contents of a GPR and saving that value, then
single stepping a lwz, lhz, or lbz with the address to be read in WBBRlow and the CTL[FFRA] bit set. The
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor19

On-Chip Emulation (OnCE)
GPR that was previously saved should be used as the rD field of the load instruction. The value read from
the memory location will then be in both the WBBRlow and the GPR whose value was previously saved.
After single stepping the load instruction and getting the read data from WBBRlow, the saved GPR value
should then be restored. For example, to read a word from address location 0x40000000, first save the
value in r31. Then single step over the instruction lwz r31, 0(X) with 0x40000000 in WBBRlow and the
CTL[FFRA] bit set. The X in the instruction is replaced by the WBBRlow register. After the single step is
complete, the data read from memory can be read by the external tool from WBBRlow. GPR r31 should
then be restored to its saved value. See Section 2.7, “Single Step” for details on single stepping.

2.12 Breakpoints
The OnCE debug module provides the capability for both software and hardware breakpoints to be set at
a particular address. For Flash programming using the Freescale provided Flash drivers, software
breakpoints are the easiest to use. As a reference, instruction address hardware breakpoints will also be
discussed in this section.

2.12.1 Software Breakpoints
Recognition of software breakpoints by the OnCE module are enabled by setting the OCR[FDB] bit along
with the DBCR0[EDM] bit. Upon executing a bkpt pseudo-instruction, the CPU enters debug mode after
the instruction following the bkpt pseudo-instruction has entered the instruction register. The bkpt
pseudo-instruction is defined to be an all 0’s instruction opcode. The Freescale-provided Flash drivers
have the bkpt pseudo-instruction built in and execution of this instruction at the completion of the driver
can be enabled or disabled. This feature of the drivers will be discussed in Section 5.2.2, “FlashInit.”

2.12.2 Instruction Address Hardware Breakpoints
The OnCE module provides the capability to set up to four instruction address hardware breakpoints.
When an instruction address breakpoint is hit, the CPU will enter debug mode prior to executing the
instruction at that address location. When debug mode is entered due to a breakpoint, the CPUSCR will
hold the address at which the breakpoint was set in the PC, and the IR will contain the instruction at that
address.

To use an instruction address hardware breakpoint, these steps are required:
1. Write the address at which a breakpoint is desired to one of the instruction address compare

registers IAC1, IAC2, IAC3, or IAC4.
2. Enable the instruction address compare debug event in the DBCR0 by setting the appropriate

enable bit; DBCR0[IAC1], DBCR0[IAC2], DBCR0[IAC3], or DBCR0[IAC4].
3. Exit from debug mode to normal execution to execute the desired code.
4. Poll the DBSR for the appropriate status bit to be set; DBSR[IAC1], DBSR[IAC2], DBSR[IAC3],

or DBSR[IAC4]. Figure 13 shows the register definition of DBSR.
5. If the appropriate status bit in DBSR is set, verify entry into debug mode by reading the OnCE

status register.
6. Clear the appropriate status bit by writing a 1 to that bit location in the DBSR; DBSR[IAC1],

DBSR[IAC2], DBSR[IAC3], or DBSR[IAC4].
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor20

Nexus Read/Write Access Block
3 Nexus Read/Write Access Block
The Nexus module provided on the cores of the MPC5500 family of devices offers the capability for
program trace, data trace, ownership trace, watchpoint messaging and trigger, and read/write (R/W) access
to memory mapped regions. This section will cover R/W access using the Nexus R/W access block. The
other features of the Nexus module are out of the scope of this document and will not be covered.

Unlike the OnCE method of memory access, the Nexus R/W access block provides the ability to read and
write memory without having to stop code execution by entering debug mode. The Nexus R/W access
method provides faster memory access over the OnCE method due to fewer JTAG scans, and it doesn’t
require loading and single stepping over any instructions. The Nexus R/W access block is independent of
the CPU and therefore bypasses the MMU and cache.

The R/W access block is controlled by three Nexus registers. These registers are the Read/Write Access
Control/Status register (RWCS), Read/Write Access Data register (RWD), and Read/Write Access
Address register (RWA). Access to the Nexus registers is covered in Section 3.1, “Nexus Register Access.”

RWCS is shown in Figure 16 and Table 7 gives the field descriptions.

Figure 16. Read/Write Access Control/Status Register (RWCS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AC RW SZ MAP PR BST 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0x7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CNT ERR DV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0x7

Table 7. RWCS Field Description

Bits Name Description

31 AC Access control.
0 End access
1 Start access

30 RW Read/write select.
0 Read access
1 Write access
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 21

Nexus Read/Write Access Block
Table 8 details the status bit encodings.

29–27 SZ
[2:0]

Word size.
0008-bit (byte)
0016-bit (half-word)
01032-bit (word)
01164-bit (double-word - only in burst mode)
100–111 Reserved (default to word)

26–24 MAP
[2:0]

MAP select.
000Primary memory map
001-111 Reserved

23–22 PR
[1:0]

Read/write access priority.
00Lowest access priority
01Reserved (default to lowest priority)
10Reserved (default to lowest priority)
11Highest access priority

21 BST Burst control.
0 Module accesses are single bus cycle at a time.
1 Module accesses are performed as burst operation.

20–16 — Reserved.

15–2 CNT
[13:0]

Access control count. Number of accesses of word size SZ.

1 ERR Read/write access error. See Table 8.

0 DV Read/write access data valid. See Table 8.

Table 8. Read/Write Access Status Bit Encoding

Read Action Write Action ERR DV

Read access has not completed Write access completed without error 0 0

Read access error has occurred Write access error has occurred 1 0

Read access completed without error Write access has not completed 0 1

Not allowed Not allowed 1 1

Table 7. RWCS Field Description (continued)

Bits Name Description
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor22

Nexus Read/Write Access Block
RWD is shown in Figure 17.

Figure 17. Read/Write Access Data Register (RWD)

RWA is shown in Figure 18.

Figure 18. Read/Write Access Address Register (RWA)

3.1 Nexus Register Access
Access to the Nexus registers is enabled by loading the Nexus3-Access instruction (0b00_0111_1100) into
the OCMD. See Section 2.2.1, “OnCE Command Register” for details on the OCMD. Once the
Nexus3-Access instruction has been loaded, reading/writing a Nexus register requires two passes through

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Read/Write Data

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0xA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Read/Write Data

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0xA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Read/Write Address

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0x9

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Read/Write Address

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0x9
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 23

Nexus Read/Write Access Block
the DR path of the OnCE TAP controller state machine that are detailed below. For details on the TAP
controller state machine, see Section 1.2, “TAP Controller State Machine.”

1. The first pass through the DR selects the Nexus register to be accessed and whether the access will
be a read or a write. This is achieved by loading an 8-bit value LSB first into the JTAG Data
Register (DR). This register has the following format:

2. The second pass through the DR then shifts the data in or out depending on the type of access
LSB first.
a) During a read access, the data is latched from the Nexus register when the TAP controller state

machine passes through the CAPTURE-DR state. The data from the Nexus register can be
read by the external tool by shifting the data out in the SHIFT-DR state. The last bit is shifted
out with TMS set to 1, causing transition to the EXIT1-DR state.

b) During a write access, the data is shifted in while in the SHIFT-DR state. The last bit is shifted
in with TMS set to 1, causing transition to the EXIT1-DR state. The data is latched into the
Nexus register when the TAP controller state machine passes through the UPDATE-DR state.

3.2 Single Memory Write Access
The steps to perform a single memory write access via the Nexus R/W access block are:

1. Initialize RWA with the address to be written using Nexus register index 0x9.
2. Initialize RWCS using Nexus register index 0x7.

a) Access Control (AC) = 0b1 (to indicate start access)
b) Map Select (MAP) = 0b000 (primary memory map)
c) Access Priority (PR) = 0b00 (lowest priority)
d) Read/Write (RW) = 0b1 (write access)
e) Word Size (SZ) = 0b000 (8-bit) or 0b001 (16-bit) or 0b010 (32-bit)
f) Access Count (CNT) = 0b00_0000_0000_0000 or 0b00_0000_0000_0001 (single access)
g) Burst Control (BST) = 0b0 (burst disabled)

3. Initialize RWD using Nexus register index 0xA with the data to be written to the address in RWA.
The endianess of the data needs to be right-justified little endian.
— 8-bit value of 0xDE to be written to memory: RWD = 0x000000DE
— 16-bit value of 0xDEAD to be written to memory: RWD = 0x0000ADDE
— 32-bit value of 0xDEADBEEF to be written to memory: RWD = 0xEFBEADDE

Nexus Register Index: Value shown at bottom of register description.

Read/Write (R/W): 0 Read
1 Write

Nexus Register Index

(7-bits) (1-bit)

R/W

RESET Value: 0x00
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor24

Nexus Read/Write Access Block
4. The Nexus block will then arbitrate for the system bus and transfer the data value from RWD to
the memory mapped address in RWA. When the access has completed without error, then
RWCS[ERR] = 0 and RWCS[DV] = 0. See Table 8 for details. This indicates that the device is
ready for the next access. Nexus will also assert the RDY pin when the transaction has completed
without error. The external tool can use this as an alternative to polling the RWCS status bits.

3.3 Burst Block Memory Write Access
The steps to perform a burst block memory write access via the Nexus R/W access block are:

1. Initialize RWA with the first address to be written using Nexus register index 0x9. The address
needs to be aligned on an 8-byte boundary. RWA[2:0] are ignored on a burst write.

2. Initialize RWCS using Nexus register index 0x7.
a) Access Control (AC) = 0b1 (to indicate start access)
b) Map Select (MAP) = 0b000 (primary memory map)
c) Access Priority (PR) = 0b00 (lowest priority)
d) Read/Write (RW) = 0b1 (write access)
e) Word Size (SZ) = 0b011 (64-bit)
f) Access Count (CNT) = 0b00_0000_0000_0100 (four double-words)
g) Burst Control (BST) = 0b1 (burst enabled)

3. Write all 32 bytes of data to be burst to RWD using Nexus register index 0xA, 32-bits at a time,
starting with the first 32-bit word to be written to the address in RWA. This data will be buffered
internally by the burst data buffer. The endianess of the 32-bit data written to RWD needs to be
little endian.
— Value of 0xDEADBEEF to be written to memory: RWD = 0xEFBEADDE

4. The Nexus block will then arbitrate for the system bus and transfer the burst data from the burst
data buffer to the memory starting at the address in RWA. When the access has completed without
error, then RWCS[ERR] = 0 and RWCS[DV] = 0. See Table 8 for details. This indicates that the
device is ready for the next access. Nexus will also assert the RDY pin when the transaction has
completed without error. The external tool can use this as an alternative to polling the RWCS
status bits.

3.4 Single Memory Read Access
The steps to perform a single memory read access via the Nexus R/W access block are:

1. Initialize RWA with the address to be read using the register index 0x9.
2. Initialize RWCS using Nexus register index 0x7.

a) Access Control (AC) = 0b1 (to indicate start access)
b) Map Select (MAP) = 0b000 (primary memory map)
c) Access Priority (PR) = 0b00 (lowest priority)
d) Read/Write (RW) = 0 (read access)
e) Word Size (SZ) = 0b000 (8-bit) or 0b001 (16-bit) or 0b010 (32-bit)
f) Access Count (CNT) = 0b00_0000_0000_0000 or 0b00_0000_0000_0001 (single access)
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 25

System Initialization
g) Burst Control (BST) = 0b0 (burst disabled)
3. The Nexus block will then arbitrate for the system bus and the read data will be transferred to

RWD from the memory mapped address in RWA. When the access has completed without error,
then RWCS[ERR] = 0 and RWCS[DV] = 1. See Table 8 for details. This indicates that the device
is ready for the next access. Nexus will also assert the RDY pin when the transaction has
completed without error. The external tool can use this as an alternative to polling the RWCS
status bits.

4. The data can then be read from the RWD register using Nexus register index 0xA. The data in
RWD will be right-justified little endian.
— 8-bit value of 0xDE read from memory: RWD = 0x000000DE
— 16-bit value of 0xDEAD read from memory: RWD = 0x0000ADDE
— 32-bit value of 0xDEADBEEF read from memory: RWD = 0xEFBEADDE

3.5 Burst Block Memory Read Access
The steps to perform a burst block memory read access via the Nexus R/W access block are:

1. Initialize RWA with the first address to be read using Nexus register index 0x9. The address needs
to be aligned on an 8-byte boundary. RWA[2:0] are ignored on a burst read.

2. Initialize RWCS using Nexus register index 0x7.
a) Access Control (AC) = 0b1 (to indicate start access)
b) Map Select (MAP) = 0b000 (primary memory map)
c) Access Priority (PR) = 0b00 (lowest priority)
d) Read/Write (RW) = 0b0 (read access)
e) Word Size (SZ) = 0b011 (64-bit)
f) Access Count (CNT) = 0b00_0000_0000_0100 (four double-words)
g) Burst Control (BST) = 0b1 (burst enabled)

3. The Nexus block will then arbitrate for the system bus and transfer the burst data from memory to
the burst data buffer starting at the address in RWA. When the access has completed without error
then RWCS[ERR] = 0 and RWCS[DV] = 1. See Table 8 for details. This indicates that the device
is ready for the next access. Nexus will also assert the RDY pin when the transaction has
completed without error. The external tool can use this as an alternative to polling the RWCS
status bits.

4. Read all 32 bytes of data from RWD using Nexus register index 0xA, 32-bits at a time, starting
with the first 32-bit word read from the address in RWA. The endianess of the 32-bit data read
from RWD will be little endian.
— Value of 0xDEADBEEF read from memory: RWD = 0xEFBEADDE

4 System Initialization
For Flash programming, there is some system initialization that needs to be performed by the external tool.
This initialization includes setting up the memory management unit (MMU), initializing the internal
SRAM, and configuring the frequency modulated phase locked loop (FMPLL).
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor26

System Initialization
4.1 Setting Up the Memory Management Unit
The memory management unit (MMU) on the MPC5500 devices provides access protection to memory
mapped regions as well as memory translation from effective to real addresses. For the purpose of Flash
programming, it is easiest to setup the MMU such that the effective addresses are the same as the real
addresses. For the CPU to access a memory mapped region, an MMU entry for that memory space must
be configured. The external tool has the capability to setup MMU entries by writing the appropriate SPRs
and single stepping over the tlbwe instruction.

For Flash programming, the external tool should set up at least four MMU entries. The steps required to
setup an MMU entry are:

1. Setup MAS0 (SPR 624).
2. Setup MAS1 (SPR 625).
3. Setup MAS2 (SPR 626).
4. Setup MAS3 (SPR 627).
5. Execute tlbwe (0x7C0007A4).

The minimum set of four MMU entries required are detailed in Table 9. This example for setting up the
MMU is for an external tool using the Freescale provided non-VLE Flash drivers running from internal
SRAM. For the VLE driver set, MAS2 value for the internal SRAM should be 0x40000028 to enable the
MAS2[VLE] bit.

4.2 Internal SRAM Initialization
The MPC5500 family of devices all contain internal SRAM that must be initialized after power-on-reset
by 64-bit writes to the entire memory. This is necessary to initialize the error-correcting code (ECC) logic.
The easiest way to do this with an external tool is to single step over a number of stmw (store multiple
words) instructions with r0 as the rS field, the address to begin the writes in WBBRlow, and CTL[FFRA]
set. See Section 2.7, “Single Step” for details on single step. This will cause all 32 GPRs to be written to
memory beginning at the address in WBBRlow using 64-bit writes. For example, the starting physical
address of the internal SRAM is 0x40000000. Stepping over stmw r0, 0(X) with the 0x40000000 in
WBBRlow will cause all 32 GPRs to be written to memory starting at address 0x40000000 using 64-bit
writes. Then 0x80 should be added to the address, written to WBBRlow and stmw executed again. This
should be done [size of internal SRAM] / [0x80] times to initialize the entire internal SRAM. The MMU

Table 9. MAS Register Settings for MMU Setup

Memory Region MAS0 MAS1 MAS2 MAS3

PBridge B1

NOTES:
1 The PBridge B MMU entry is not required for Flash programming but this MMU entry in

addition to the others allows access to the entire memory map of the MPC5500 devices.

0x10000000 0xC0000500 0xFFF0000A 0xFFF0003F

Internal SRAM 0x10010000 0xC0000400 0x40000008 0x4000003F

PBridge A 0x10020000 0xC0000500 0xC3F00008 0xC3F0003F

Internal Flash 0x10030000 0xC0000700 0x00000000 0x0000003F
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 27

Creating the Flash Programming Tool
must be configured prior to initializing the internal SRAM. See Section 4.1, “Setting Up the Memory
Management Unit” for details.

4.3 FMPLL Initialization
For proper Flash operation, the system frequency needs to be greater than 25 MHz and less than the
specified maximum operating frequency for the device being programmed. Assuming that crystal
reference is chosen as the PLL configuration, the following formula is used to determine system
frequency:

All reading and writing of the FMPLL control and status registers can be done using one of the methods
described in Section 2.11, “OnCE Memory Access” or Section 3, “Nexus Read/Write Access Block.”
Below are the steps required to initialize the PLL through the debug interface for Flash programming:

1. Determine the appropriate value for PREDIV, MFD, and RFD fields in the FMPLL_SYNCR for
the desired system frequency based on the reference frequency (crystal or external clock).

2. Write FMPLL_SYNCR using the following values:
a) Set PREDIV to the desired final value.
b) Set MFD to the desired final value.
c) Set RFD to the desired final value + 1. This will cause the system frequency to initially be less

than the final desired system frequency.
d) All other bits should be set to 0.

3. Wait for the FMPLL to lock by polling the FMPLL_SYNSR[LOCK] status bit.
4. Write FMPLL_SYNCR changing the RFD field to the desired final value. All other bits and fields

should be left unchanged.

5 Creating the Flash Programming Tool
This section covers the Flash drivers provided by Freescale, the tool requirements, and also suggests a
functional division of the tool.

5.1 Flash Programming Drivers
Freescale provides a set of Flash drivers called the Standard Software H7F Driver (SSD). A user manual
is also installed with the drivers. These drivers are easy to use and well documented. The drivers come in
a c-array format, s-record format, and library format. For external tools, the s-record format is the easiest
to use. Instructions on how to use the s-record format set of drivers is discussed in the next section. There
are also examples of using the three driver formats provided with the installation of the SSD.

Fsys Fref
MFD 4+()

PREDIV 1+() 2
RFD×()

---•=
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor28

Creating the Flash Programming Tool
5.2 Tool Requirements
The Flash programming tool must perform several required tasks to program the Flash on the MPC5500
devices.

5.2.1 Debug and Driver Initialization
The first requirement is to enter debug mode followed by the appropriate initialization. These steps must
be performed every time a reset occurs or a new MPC5500 device is connected to the Flash programming
tool. The steps to do this are listed below.

1. Ensure that the JTAGC currently has control of the TAP by going through the PAUSE-DR state.
See Section 1.3.2, “TAP Sharing” for details.

2. Enable the OnCE TAP controller by the method outlined in Section 2.1, “Enabling the OnCE TAP
Controller.”

3. Enter debug mode during reset and enable recognition of software breakpoints as mentioned in
Section 2.4, “Entering Debug Mode During Reset.”

4. Enable external debug mode and clear the debug status bits as mention in Section 2.5, “Enabling
External Debug Mode and Other Initialization.”

5. Setup the MMU as described in Section 4.1, “Setting Up the Memory Management Unit.”
6. Initialize the internal SRAM as mentioned in Section 4.2, “Internal SRAM Initialization.”
7. Initialize the FMPLL as mentioned in Section 4.3, “FMPLL Initialization.”

The next step is to load the s-record format Flash driver set. The required drivers to load are FlashInit,
SetLock, FlashProgram, and FlashErase. The other drivers are not required but could be loaded if features
other than erasing and programming are desired. The s-record drivers all specify the start address to be 0x0
however the drivers are position independent. The tool should load each driver into internal SRAM at a
desired location. The tool is responsible for knowing where these drivers are located in memory. The SSD
user’s manual specifies the code size for each driver. Space should also be reserved in the internal SRAM
for variables needed for the driver set. For example, the SSD_CONFIG structure is used for all drivers.
Space must be allocated for this structure. Space should also be allocated in internal SRAM for the stack
and a buffer for the data to be programmed to Flash. Stack usage for each driver is also documented in the
SSD user’s manual. The drivers and variables can be written by the method described Section 2.11, “OnCE
Memory Access” or the methods described in Section 3, “Nexus Read/Write Access Block.”

5.2.2 FlashInit
After the drivers are loaded into internal SRAM, operations on the Flash can begin. The FlashInit driver
should be called first to initialize the Flash. The steps required are outlined below.

1. Setup the SSD_CONFIG structure as required. This is documented in the SSD user’s manual. The
user should correctly initialize the fields h7fRegBase, mainArrayBase, shadowRowBase,
shadowRowSize, pageSize, and BDMEnable. The other fields will be initialized when FlashInit is
executed. BDMEnable should be set to 1 to cause debug mode to be entered via a software
breakpoint when each driver completes execution. This is the easiest way for the external tool to
determine when driver execution is complete.
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 29

Creating the Flash Programming Tool
2. Setup r1 as the stack pointer by writing r1 using the method described in Section 2.9, “GPR
Access.”

3. Setup r3 to point to the SSD_CONFIG structure in internal SRAM.
4. Set the PC to the beginning of FlashInit minus 0x4 and load the IR with a nop (0x60000000). See

Section 2.6, “CPU Status and Control Scan Chain Register (CPUSCR)” for details.
5. Exit debug mode and begin execution of the driver as described in Section 2.8, “Exit From Debug

Mode to Normal Execution.”
6. Poll the OnCE Status Register to determine when debug mode has been re-entered. Reading the

OnCE Status Register is described in Section 2.3, “OnCE Status Register.”
7. When debug mode has been entered, read the return value in r3. Possible return values and their

meanings are discussed in the SSD user’s manual. Reading a GPR is explained in Section 2.9,
“GPR Access.”

5.2.3 SetLock
After the Flash has been initialized using the FlashInit function, the SetLock function should be called as
many times as required to unlock or lock the appropriate Flash blocks. For the low and mid blocks as well
as the shadow block, the lock bits in both the primary and secondary lock registers must be set
appropriately. It is recommended to lock the shadow block unless programming of the shadow block is
absolutely necessary. Erasing the shadow block without re-programming the censorship information prior
to a reset will cause the device to be censored. The steps to call the SetLock driver are listed below.

1. Setup r1 as the stack pointer.
2. Setup r3 to point to the SSD_CONFIG structure in internal SRAM.
3. Setup r4 with the lock indicator as documented in the SSD user’s manual.
4. Setup r5 with the lock state as documented in the SSD user’s manual.
5. Setup r6 with the correct password as documented in the SSD user’s manual.
6. Set the PC to the beginning of SetLock minus 0x4 and load the IR with a nop (0x60000000).
7. Exit debug mode and begin execution of the driver.
8. Poll the OnCE Status Register to determine when debug mode has been re-entered.
9. When debug mode has been entered, read the return value in r3. Possible return values and their

meanings are discussed in the SSD user’s manual.

5.2.4 FlashErase
When the appropriate blocks have been locked or unlocked, then an erase of the unlocked blocks can be
performed. The steps to call the FlashErase driver are listed below.

1. Setup r1 as the stack pointer.
2. Setup r3 to point to the SSD_CONFIG structure in internal SRAM.
3. Setup r4 to indicate either the main array or shadow block to be erased as describes in the SSD

user’s manual. Erasing the shadow block without re-programming the censorship control
information prior to a reset will result in the device being censored.

4. Setup r5 to select the low address array blocks to be erased as documented in the SSD user’s
manual.
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor30

Creating the Flash Programming Tool
5. Setup r6 to select the mid address array blocks to be erased as documented in the SSD user’s
manual.

6. Setup r7 to select the high address array blocks to be erased as documented in the SSD user’s
manual.

7. Setup r8 with the pointer to the call back function as documented in the SSD user’s manual.
8. Set the PC to the beginning of FlashErase minus 0x4 and load the IR with a nop (0x60000000).
9. Exit debug mode and begin execution of the driver.
10. Poll the OnCE Status Register to determine when debug mode has been re-entered.
11. When debug mode has been entered, read the return value in r3. Possible return values and their

meanings are discussed in the SSD user’s manual.

5.2.5 FlashProgram
When Flash blocks have been erased, they then can be programmed. To program the Flash, the internal
SRAM should first be written with the data to be programmed in Flash. Depending on the size of the data
buffer in internal SRAM and the size of the data to be programmed to Flash, the FlashProgram driver may
need to be called multiple times. The steps to call the FlashProgram driver are listed below.

1. Setup r1 as the stack pointer.
2. Setup r3 to point to the SSD_CONFIG structure in internal SRAM.
3. Setup r4 to point to the destination address to be programmed in Flash. This address must be

aligned on a double word boundary.
4. Setup r5 to the size of the data in bytes to be programmed to Flash. This size should be a multiple

of 8 and the combination of the destination address and size should be entirely contained in the
main array or shadow block.

5. Setup r6 to point to the source buffer of data in internal SRAM to be programmed to Flash. This
address should be aligned on a word boundary.

6. Setup r7 with the pointer to the call back function as documented in the SSD user’s manual.
7. Set the PC to the beginning of FlashProgram minus 0x4 and load the IR with a nop

(0x60000000).
8. Exit debug mode and begin execution of the driver.
9. Poll the OnCE Status Register to determine when debug mode has been re-entered.
10. When debug mode has been entered, read the return value in r3. Possible return values and their

meanings are discussed in the SSD user’s manual.

5.2.6 Using Other Drivers
There are other useful drivers provided with the driver set. For example, BlankCheck can be used to verify
that a particular region is erased, and ProgramVerify can be used to verify that the data was programmed
correctly. The method to use these other drivers is similar to the above mentioned drivers except that the
GPRs will need to be setup appropriately for that particular driver.
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 31

Creating the Flash Programming Tool
5.3 Functional Division of the External Tool
Before creating the external tool for Flash programming, thought should be given to how the software
should be divided to meet the tool’s functional requirements. The following list gives an example of a
simple functional division of the software:

• OnCE TAP controller enable, Section 2.1, “Enabling the OnCE TAP Controller.”
• OnCE register read, Section 2.2, “OnCE Register Access.”
• OnCE register write, Section 2.2, “OnCE Register Access.”
• OnCE status register read, Section 2.3, “OnCE Status Register.”
• Debug mode during reset, Section 2.4, “Entering Debug Mode During Reset.”
• Single step, Section 2.7, “Single Step.”
• Exit from debug mode, Section 2.8, “Exit From Debug Mode to Normal Execution.”
• Write GPR, Section 2.9, “GPR Access.”
• Read GPR, Section 2.9, “GPR Access.”
• Write SPR, Section 2.10, “SPR Access.”
• Read SPR, Section 2.10, “SPR Access.”
• OnCE memory read, Section 2.11, “OnCE Memory Access.”
• OnCE memory write, Section 2.11, “OnCE Memory Access.”
• Nexus3 single write, Section 3.2, “Single Memory Write Access.”
• Nexus3 burst write, Section 3.3, “Burst Block Memory Write Access.”
• Nexus3 single read, Section 3.4, “Single Memory Read Access.”
• Nexus3 burst read, Section 3.5, “Burst Block Memory Read Access.”
• MMU initialization, Section 4.1, “Setting Up the Memory Management Unit.”
• Internal SRAM initialization, Section 4.2, “Internal SRAM Initialization.”
• FMPLL initialization, Section 4.3, “FMPLL Initialization.”
• S-record parser and loader.
• Debug and driver initialization, Section 5.2.1, “Debug and Driver Initialization.”
• Flash initialization, Section 5.2.2, “FlashInit.”
• Flash block lock initialization, Section 5.2.3, “SetLock.”
• Flash erase, Section 5.2.4, “FlashErase.”
• Flash program, Section 5.2.5, “FlashProgram.”
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor32

Revision History
6 Revision History
Table 10 provides a revision history of this document.

Table 10. Revision History

Revision Location(s) Substantive Change(s)

Rev. 0 This is the first released version of this document.

Rev. 0.1 Page 23 Updated the register indexes for the RWA and RWD registers
MPC5500 Flash Programming Through Nexus/JTAG, Rev. 0.1

Freescale Semiconductor 33

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-0047, Japan
0120 191014 or +81 3 3440 3569
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners. The ARM POWERED logo is a registered
trademark of ARM Limited. ARM7TDMI-S is a trademark of ARM Limited.
Java and all other Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
The Bluetooth trademarks are owned by their proprietor and used by
Freescale Semiconductor, Inc. under license.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

AN3283
Rev. 0.1
06/2006

	MPC5500 Flash Programming Through Nexus/JTAG
	1 JTAG
	1.1 JTAG Signals
	1.2 TAP Controller State Machine
	1.3 JTAG Controller (JTAGC)
	1.3.1 JTAGC Reset
	1.3.2 TAP Sharing

	2 On-Chip Emulation (OnCE)
	2.1 Enabling the OnCE TAP Controller
	2.2 OnCE Register Access
	2.2.1 OnCE Command Register
	2.2.2 Example of OnCE Register Write
	2.2.3 Example of OnCE Register Read

	2.3 OnCE Status Register
	2.4 Entering Debug Mode During Reset
	2.5 Enabling External Debug Mode and Other Initialization
	2.6 CPU Status and Control Scan Chain Register (CPUSCR)
	2.6.1 Instruction Register (IR)
	2.6.2 Control State Register (CTL)
	2.6.3 Program Counter Register (PC)
	2.6.4 Write-Back Bus Register (WBBRlow, WBBRhigh)
	2.6.5 Machine State Register (MSR)

	2.7 Single Step
	2.8 Exit From Debug Mode to Normal Execution
	2.9 GPR Access
	2.10 SPR Access
	2.11 OnCE Memory Access
	2.12 Breakpoints
	2.12.1 Software Breakpoints
	2.12.2 Instruction Address Hardware Breakpoints

	3 Nexus Read/Write Access Block
	3.1 Nexus Register Access
	3.2 Single Memory Write Access
	3.3 Burst Block Memory Write Access
	3.4 Single Memory Read Access
	3.5 Burst Block Memory Read Access

	4 System Initialization
	4.1 Setting Up the Memory Management Unit
	4.2 Internal SRAM Initialization
	4.3 FMPLL Initialization

	5 Creating the Flash Programming Tool
	5.1 Flash Programming Drivers
	5.2 Tool Requirements
	5.2.1 Debug and Driver Initialization
	5.2.2 FlashInit
	5.2.3 SetLock
	5.2.4 FlashErase
	5.2.5 FlashProgram
	5.2.6 Using Other Drivers

	5.3 Functional Division of the External Tool

	6 Revision History

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

